The Global Positioning System of satellites remains the prime source of positioning, navigation and timing for the military, but it’s increasingly vulnerable as adversaries develop capabilities that can undermine the signal. Delivering capabilities that allow the war fighter to verify such data or replace it in a degraded or denied environment is a major problem that the Army now wants to solve.

Col. Nickolas Kioutas — program manager for position, navigation and timing, Army Program Executive Office Intelligence, Electronic Warfare and Sensors — is leading the Army’s efforts to develop anti-jamming and anti-spoofing technology and get it into the hands of war fighters as soon as possible.

Kioutas and Director of the Assured PNT Cross-Functional Team Willie Nelson held a media roundtable Oct. 4 announcing the fielding of one such solution: the Mounted Assured Position Navigation and Timing System (MAPS). Kioutas sat with C4ISRNET Oct. 15 at the Association of the U.S. Army’s annual conference to discuss MAPS, the Military Encrypted GPS Signal and what he would like to see from industry as he looks for assured PNT solutions.

C4ISRNET: Your office recently announced that you fielded MAPS with 62 Stryker vehicles in the Army’s 2nd Cavalry Regiment in Germany. What’s next in the development of the MAPS program?

COL. NICKOLAS KIOUTAS: We’ve got two generations right now that we’re working with. Generation 1 is really an anti-jamming capability that we fielded to 2CR second cavalry unit in Germany just this last month, and we’re looking to upgrade now to our Gen. 2 capability, which would add the spoof protection. Right now we’re doing prototyping with the Gen. 2 and we’re actually going to compete the Gen. 1. Hopefully, it can integrate some spoof protection, but we’ll be competing the Gen. 1 against the Gen. 2 to ask, “Hey, is that really the right capability to go forward with,” and field a lot more. Obviously, we just fielded 62. We still have in the pipeline some fielding of Gen. 1 before we make that final decision. And then we’ll field either Gen. 2, or we’ll decide to go to a Gen. 3 and continue fielding more of the Gen. 1 with upgraded spoof capabilities.

C4ISRNET: And what did you learn with the fielding of the Gen. 1 capability?

KIOUTAS: It’s great to get a chance to do a little bit of something before you have to do a lot of something. You kind of learn some lessons and figure out what did the soldiers really like? What did they have problems with? Where can we make those little tweaks that allow us to do really well when we go to do the much broader army.

A soldier checks out an antenna on a Stryker vehicle outfitted with the Gen. 1 Mounted Assured-PNT system. (John Higgins/PEO IEW&S Public Affairs)
A soldier checks out an antenna on a Stryker vehicle outfitted with the Gen. 1 Mounted Assured-PNT system. (John Higgins/PEO IEW&S Public Affairs)

C4ISRNET: Are there lessons from MAPS that can be applied to DAPS? Where is that program now?

KIOUTAS: We are learning from what we’re doing. It’s really a change in the construct of how we do acquisitions. Instead of having the one huge program that’s been perfectly thought out, perfectly tested and built, and then we get it to the field and it’s 10 years too late and it’s really not what we want, we’re doing more iterative learning steps. So, everything that we learn even on the MAPS side — [which] is very similar technology — will apply to the DAPS side. With DAPS we’re also developing some prototypes. We’ve got three vendors right now that we’re working with to give us early prototypes, get them to the soldiers, let them touch and play with them, tell us what they like and what they didn’t like, and then we’ll do an initial capability set. And then we’ll decide, hey, was there something that we can do different, better and then upgrade? So, [we’re] constantly going to try to do that approach.

C4ISRNET: The Air Force is working to develop M-Code, a military-grade GPS code with anti-jamming capabilities. How does the eventual delivery of that impact the development of anti-spoofing capabilities in the here and now?

KIOUTAS: M-Code is important. It’s a much better capability than the existing Selective Availability Anti-Spoof Model, or SAASM. However, it’s not the complete answer, and what I always say is PNT does not equal GPS, because it’s not just about GPS capability. It’s about layering technologies with each other in order to be able to operate in a denied or degraded environment.

C4ISRNET: M-Code delivery may be a ways out, but a limited version called M-Code Early Use is supposed to be available in the near future. How does that interim solution factor into assured-PNT solutions being developed now?

KIOUTAS: There’s probably two answers to that. One is we are already working with the M-Code to put it into the MAPS Gen. 2, as well as the DAPS system. So, we’re going to have M-Code from the get-go. The other thing is, the Army has really got to decide how many M-Code modules are we going to buy between now and say 2028, when we’re really going to get the increment 2 M-Code capabilities. So, we’ve really got to project out how many systems are we going to buy, what are they going to look like, [and] there’s three different vendors so which vendor do we need to buy [from]?

C4ISRNET: Let’s talk about the Army’s need for a modular open systems architecture as you develop APNT capabilities. How does that inform your acquisitions strategy? What do you want industry to know?

KIOUTAS: For a modular open systems architecture, what we’re really going to is [a] change from the previous way we did acquisition. Again, we’re not going to do the one megalithic program that is perfectly designed and takes 10 years to build and then it gets to the field too late, we need a modular open systems architecture that allows us to be agile, that allows us to constantly take what industry is developing and integrate it to the solution to pace the threat. We’re working with the CMOSS architecture to be able to put a bunch of different cards for our MAPS, maybe Gen. 3 capability. We’re also working on a similar approach to the DAPS program. So, again, [we’re] always looking for, not what is the best integrated solution, but what are the best individual solutions that we can take from across industry back to breed and integrate together.

C4ISRNET: We’re speaking at AUSA and around us many companies are showing off their assured PNT solutions. What are some of the APNT solutions you’re excited to see from commercial industry?

KIOUTAS: That’s a good question. I don’t really know the answer until we do some more testing. Of course, software-defined things are always great. The problem is there’s sometimes problems with security and cybersecurity of those systems. And, so, there’s probably a balance between do you really want a lockdown solution, where do you want that lockdown solution and where can you accept some risk and have a little more flexibility in software.