WASHINGTON — The Space Development Agency has selected Lockheed Martin and York Space Systems to build the satellites for the first tranche of its transport layer ― an on-orbit mesh network that is key to the Pentagon’s plans to connect on orbit sensors with terrestrial shooters ― the agency announced Aug. 31.

Each company will build 10 satellites for SDA, though at vastly different prices. While York Space Systems will receive $94 million to build its 10 satellites, Lockheed Martin will receive $188 million for the same number. According to SDA Director Derek Tournear, that difference reflects the agency’s firm-fixed-price contract approach to this solicitation, where they asked companies to give them a price point to meet SDA’s detailed specifications.

“We have two providers roughly providing the same thing at different prices. How does that work? It works simply as we put out a solicitation that gave requirements and gave a schedule, and we asked for firm-fixed-price bids based on those requirements and schedule,” explained Tournear in a media call following the announcement. “We had several providers that bid that came back with a range of different technical solutions and a range of prices.

“We awarded them based completely on the technical merit and what we thought was their ability to be able to make schedule and provide a solution, and then price was factored into that,” he added. “That’s what led York and Lockheed Martin to come out on top.”

The satellites will comprise Tranche 0 of the agency’s planned transport layer, a constellation of satellites that can transfer data globally through optical intersatellite links. Tournear has previously noted the space-based mesh network will form the space component to the Defense Department’s Joint All-Domain Command and Control enterprise, or JADC2.

“The transport layer, which is what the draft [request for proposals] and the industry day was talking about today, is going to be the unifying effort across the department. That is going to be what we use for low-latency [communications] to be able to pull these networks together, and that, in essence, is going to be the main unifying truss for the JADC2 and that effort moving forward. That is going to be the space network that is utilized for that,” Tournear explained in April.

Six of the 20 satellites will have Link-16 transmitters, allowing them to connect to warfighters through the military’s tactical network.

The contracts include on-time delivery of space vehicles and paths to optical intersatellite link interoperability. Work is expected to kick off within 30 days, said Tournear.

While Tranche 0 will be made up of just 20 satellites in low Earth orbit, SDA plans to add more satellites every two years as part of a spiral development approach. The transport layer will serve as the base for the new multi-layered National Defense Space Architecture, which will be made up of hundreds of interconnected satellites serving a number of missions — including tracking hypersonic weapons and providing beyond-line-of-sight targeting--primarily from low Earth orbit.

SDA plans to launch Tranche 0 into orbit in the fourth quarter of fiscal 2022.

“We’re looking about this time in exactly two years, we will be launching 20 satellites from two different performers to make up the nucleus of our Tranche 0 transport layer,” said Tournear.

According to the May 1 contract solicitation, the agency has six goals for its Tranche 0 transport layer:

  • Demonstrate low-latency data transport to the war fighter over the optical cross link mesh network.
  • Demonstrate the ability to deliver data from an external, space-based sensor to the war fighter via the transport layer.
  • Demonstrate a limited battle management C3 functionality.
  • Transfer Integrated Broadcast System data across the mesh network to the war fighter.
  • Store, relay and transmit Link 16 data over the network in near real time.
  • Operate a common timing reference independent of GPS.

Nathan Strout covers space, unmanned and intelligence systems for C4ISRNET.

More In Space